learun开发社区 - 力软.net/java快速开发平台官方论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 1197|回复: 3

【程序员进阶之路】Linux环境多线程编程基础设施

  [复制链接]

6

主题

6

帖子

32

积分

新手上路

Rank: 1

积分
32
发表于 2019-4-18 10:17:45 | 显示全部楼层 |阅读模式

本文介绍多线程环境下并行编程的基础设施。主要包括:

  • Volatile
  • __thread
  • Memory Barrier
  • __sync_synchronize
volatile

编译器有时候为了优化性能,会将一些变量的值缓存到寄存器中,因此如果编译器发现该变量的值没有改变的话,将从寄存器里读出该值,这样可以避免内存访问。

但是这种做法有时候会有问题。如果该变量确实(以某种很难检测的方式)被修改呢?那岂不是读到错的值?是的。在多线程情况下,问题更为突出:当某个线程对一个内存单元进行修改后,其他线程如果从寄存器里读取该变量可能读到老值,未更新的值,错误的值,不新鲜的值。

如何防止这样错误的“优化”?方法就是给变量加上volatile修饰。

  1. volatile int i=10;//用volatile修饰变量i
  2. ......//something happened
  3. int b = i;//强制从内存中读取实时的i的值
复制代码

OK,毕竟volatile不是完美的,它也在某种程度上限制了优化。有时候是不是有这样的需求:我要你立即实时读取数据的时候,你就访问内存,别优化;否则,你该优化还是优化你的。能做到吗?

不加volatile修饰,那么就做不到前面一点。加了volatile,后面这一方面就无从谈起,怎么办?伤脑筋。

其实我们可以这样:


  1. int i = 2; //变量i还是不用加volatile修饰

  2. #define ACCESS_ONCE(x) (* (volatile typeof(x) *) &(x))
复制代码

需要实时读取i的值时候,就调用ACCESS_ONCE(i),否则直接使用i即可。

这个技巧,我是从《Is parallel programming hard?》上学到的。

听起来都很好?然而险象环生:volatile常被误用,很多人往往不知道或者忽略它的两个特点:在C/C++语言里,volatile不保证原子性;使用volatile不应该对它有任何Memory Barrier的期待。

第一点比较好理解,对于第二点,我们来看一个很经典的例子:

  1. volatile int is_ready = 0;
  2. char message[123];
  3. void thread_A
  4. {
  5.   while(is_ready == 0)
  6.   {
  7.   }
  8.   //use message;
  9. }
  10. void thread_B
  11. {
  12.   strcpy(message,"everything seems ok");
  13.   is_ready = 1;
  14. }
复制代码

线程B中,虽然is_ready有volatile修饰,但是这里的volatile不提供任何Memory Barrier,因此12行和13行可能被乱序执行,is_ready = 1被执行,而message还未被正确设置,导致线程A读到错误的值。

这意味着,在多线程中使用volatile需要非常谨慎、小心。

__thread

__thread是gcc内置的用于多线程编程的基础设施。用__thread修饰的变量,每个线程都拥有一份实体,相互独立,互不干扰。举个例子:


  1. #include<iostream>  
  2. #include<pthread.h>  
  3. #include<unistd.h>  
  4. using namespace std;
  5. __thread int i = 1;
  6. void* thread1(void* arg);
  7. void* thread2(void* arg);
  8. int main()
  9. {
  10.   pthread_t pthread1;
  11.   pthread_t pthread2;
  12.   pthread_create(&pthread1, NULL, thread1, NULL);
  13.   pthread_create(&pthread2, NULL, thread2, NULL);
  14.   pthread_join(pthread1, NULL);
  15.   pthread_join(pthread2, NULL);
  16.   return 0;
  17. }
  18. void* thread1(void* arg)
  19. {
  20.   cout<<++i<<endl;//输出 2  
  21.   return NULL;
  22. }
  23. void* thread2(void* arg)
  24. {
  25.   sleep(1); //等待thread1完成更新
  26.   cout<<++i<<endl;//输出 2,而不是3
  27.   return NULL;
  28. }
复制代码

需要注意的是:

1,__thread可以修饰全局变量、函数的静态变量,但是无法修饰函数的局部变量。

2,被__thread修饰的变量只能在编译期初始化,且只能通过常量表达式来初始化。

Memory Barrier

为了优化,现代编译器和CPU可能会乱序执行指令。例如:

  1. int a = 1;
  2. int b = 2;
  3. a = b + 3;
  4. b = 10;
复制代码

CPU乱序执行后,第4行语句和第5行语句的执行顺序可能变为先b=10然后再a=b+3

有些人可能会说,那结果不就不对了吗?b为10,a为13?可是正确结果应该是a为5啊。

哦,这里说的是语句的执行,对应的汇编指令不是简单的mov b,10和mov b,a+3。

生成的汇编代码可能是:

  1. movl    b(%rip), %eax ; 将b的值暂存入%eax
  2. movl    $10, b(%rip) ; b = 10
  3. addl    $3, %eax ; %eax加3
  4. movl    %eax, a(%rip) ; 将%eax也就是b+3的值写入a,即 a = b + 3
复制代码

这并不奇怪,为了优化性能,有时候确实可以这么做。但是在多线程并行编程中,有时候乱序就会出问题。

一个最典型的例子是用锁保护临界区。如果临界区的代码被拉到加锁前或者释放锁之后执行,那么将导致不明确的结果,往往让人不开心的结果。

还有,比如随意将读数据和写数据乱序,那么本来是先读后写,变成先写后读就导致后面读到了脏的数据。因此,Memory Barrier就是用来防止乱序执行的。具体说来,Memory Barrier包括三种:

1,acquire barrier。acquire barrier之后的指令不能也不会被拉到该acquire barrier之前执行。

2,release barrier。release barrier之前的指令不能也不会被拉到该release barrier之后执行。

3,full barrier。以上两种的合集。

所以,很容易知道,加锁,也就是lock对应acquire barrier;释放锁,也就是unlock对应release barrier。哦,那么full barrier呢?

__sync_synchronize

__sync_synchronize就是一种full barrier。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
回复

使用道具 举报

0

主题

8

帖子

106

积分

注册会员

Rank: 2

积分
106
发表于 2019-4-18 10:55:42 | 显示全部楼层
get
回复

使用道具 举报

0

主题

6

帖子

160

积分

注册会员

Rank: 2

积分
160
发表于 2019-4-19 10:44:34 | 显示全部楼层
学习一下,顺便拿个分
回复

使用道具 举报

0

主题

8

帖子

236

积分

中级会员

Rank: 3Rank: 3

积分
236
发表于 2019-5-21 10:44:44 | 显示全部楼层
大神看不上新手看不懂系列
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|learun开发社区 - 力软.net/java快速开发平台官方论坛 ( 沪ICP备14034717号 )

GMT+8, 2020-11-27 00:06 , Processed in 0.185161 second(s), 24 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表